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Overview

The ultimate aim of this project was to identify general principles and develop
concrete techniques for distributed decision making in dynamic, uncertain
environments. We focused our effort in three areas:

1. Abstraction methods for uncertain reasoning [Liu and Wellman 2002].
2. Market-based models for distributed belief aggregation.

3. New formalisms and algorithms for dynamic plan recognition, extending
and generalizing techniques based on probabilistic context-free grammars

(PCFGs).y

We describe our main results in each of these threads below. The contributions
to abstraction methods and market-based belief aggregation are outlined,
whereas the developments in plan recognition are described in greater detail.

It is also worth noting that the project resulted in three PhD theses:

1. State-Space Abstraction Methods for Approximate Evaluation of Bayesian
Networks (Chao-Lin Liu, May 1998)

2 Probébilistic Grammars for Plan Recognition (David Pynadath, January 1999)

3. Aggregating Probabilistic Beliefs: Market Mechanisms and Graphical
Representations (David M. Pennock, September 1999)

Abstraction Methods for Uncertain Reasoning

Our new work on abstraction approximations developed techniques for
enhancing qualitative and numeric reasoning. First, we developed incremental
techniques for a task we call tradeoff resolution, in the context of qualitative
Bayesian networks [Liu and Wellman 1998]. One approach incrementally
marginalizes nodes that contribute to the ambiguous qualitative relationships.
Another approach evaluates approximate networks for bounds of probability
distributions, and uses these bounds to determine the qualitative relationships in
question. This approach is incremental in that the algorithm refines the state
spaces of random variables for tighter bounds until the qualitative relationships
are determined. Both approaches provide systematic methods for tradeoff
resolution at potentially lower computational cost than application of purely
numeric methods.

Second, we developed techniques that exploit qualitative probabilistic ,
relationships among variables for computing bounds of conditional probability
distributions of interest in Bayesian networks [Liu and Wellman 1998]. Using the
signs of qualitative relationships, we define abstraction operations that are
guaranteed to bound the distributions of interest in the desired direction. By




evaluating incrementally improved approximate networks, our algorithm
obtains monotonically tightening bounds that converge to exact distributions.
For some classes of utility functions, the tightening bounds monotonically reduce
the set of admissible decision alternatives as well.

Market-Based Belief Aggregation
Background

The problem of belief aggregation is to derive a summary representation of a
group's beliefs as a function of the beliefs of its constituent agents. The problem
is a classic one in statistics, and it has also been well-studied in decision analysis.
Despite the interest it has garnered, the problem has eluded definitive answers,
and the plethora of impossibility results and definitional controversies in the

- literature cast doubt on the prospects for an entirely satisfactory solution.

Nevertheless, as trends toward decentralization in computation continue,
aggregation mechanisms are likely to play an increasing role in uncertain
reasoning. Software agents representing distinct interests and possessing
individual knowledge and information-gathering capabilities will form their own
beliefs, and no overarching authority will be technically or computationally able
to gather all of the relevant information centrally or enforce any globally
consistent consensus. If we wish to gain the benefits of others’ knowledge, we
need to induce them to provide relevant reports, or perform other actions that
will reveal the information we seek.

From this perspective, paramount in the design of a belief aggregation
mechanism are the incentives it provides to agents to reveal their private beliefs.
Given some behavioral assumptions on the participants, we aim to characterize
the aggregation function “computed” by the mechanism, that is, the relationship
of the derived summary to the agents’ individual beliefs.

In this project, we investigated the behavior of a particular approach to belief
aggregation, based on markets in uncertain propositions [Pennock 1999]. The
idea is that agents’ decisions to trade in such markets will be driven by their
beliefs and utility, and therefore the resulting prices in the markets will reflect
private information bearing on the likelihood of the propositions. Agents in the
market have to back up their stated positions with real money, and so have
tangible disincentives to lie as well as positive incentives to participate and to
gather all cost-effective relevant information.

One potential application of this approach is to use securities markets as a simple
way to disseminate information in a large-scale distributed system. In such
systems, relevant information is dispersed widely, and agents do not necessarily
know which counterparts know what. By opening securities markets, we
provide agents an incentive to (indirectly) reveal their information to the
broader system. This can provide a significant benefit to other agents, who can
then use this information without incurring the cost of acquiring it.




Opinion Pools

For decades, scientists have grappled with how best to aggregate subjective
probabilities from multiple experts in order to form consensus assessments.
Many combination functions or opinion pools have been proposed, each sensible
undér particular assumptions or measures. In the market-based approach we
explore, the equilibrium prices of securities, paying off contingent on uncertain
events, are interpreted as consensus probabilities. We developed a prescriptive
model, identifying correspondences between the consensus probabilities derived
by the market and by the traditional opinion pools [Pennock and Wellman 1997].
Parameters of the agents’ utilities in the market context serve the role of expert

weights in opinion pools.

In particular, we showed how securities markets can replicate the “logarithmic
opinion pool”. A security in this context is an asset that pays off $1 contingent on
. an uncertain proposition p. When rational agents buy and sell this security, its
equilibrium price will reflect their beliefs about this proposition. The “market
price” is thus a summary, or “pool” of these beliefs. If the agents have constant
risk aversion, the equilibrium price will behave exactly as the logarithmic opinion
pool, that is, a weighted geometric mean of individual agent probabilities. We
have further derived conditions under which the equilibrium corresponds to the
linear opinion pool, and established related theoretical properties as well. We
have also implemented simulations of these security markets, and have
demonstrated empirically that the prices converge as expected, even when
agents learn from each others’ beliefs, as revealed through the market [Pennock

and Wellman 2001].

In the extended model, where agents learn from prices, the weights are shown
to additionally depend on self-assessed confidence. Even when agents
themselves do not learn, we have shown that the market as a whole can adapt
over time in the manner of a Bayesian-rational individual, by transferring wealth
from inaccurate to accurate agents. »

Compact Securities Markets

The securities market is the fundamental theoretical framework in economics
and finance for resource allocation under uncertainty. Securities serve both to
reallocate risk and to disseminate probabilistic information. Complete securities
markets—which contain one security for every possible state of nature—support
Pareto optimal allocations of risk. Complete markets suffer from the same
exponential dependence on the number of underlying events as do joint
probability distributions. In this project, we examined whether markets can be
structured and “compacted” in the same manner as Bayesian network
representations of joint distributions. We were able to show that, if all agents’
risk-neutral independencies agree with the independencies encoded in the
market structure, then the market is operationally complete: risk is still Pareto
optimally allocated, yet the number of securities can be exponentially smaller.
For collections of agents of a certain type, agreement on Markov independencies




is sufficient to admit compact and operationally complete markets [Pennock and
Wellman 2000].

Graphical Models of Consensus Belief

Graphical models based on conditional independence support concise encodings
of the subjective belief of a single agent. A natural question is whether the
consensus belief of a group of agents can be represented with equal parsimony.
We have proved, under relatively mild assumptions, that even if everyone
agrees on a common graph topology, no method of combining beliefs can
maintain that structure. Even weaker conditions rule out local aggregation
within conditional probability tables. On a more positive note, we have shown
that if probabilities are combined with the logarithmic opinion pool (LogOP),
then commonly held Markov independencies are maintained. This suggests a
straightforward procedure for constructing a consensus Markov network. Based
on this idea; we developed an algorithm for computing the LogOP with time
complexity comparable to that of exact Bayesian inference [Pennock and
Wellman 1999].

Probabilistic Plan Recognition

Pattern and Plan Recognition

The problem of plan recognition is to induce the plan of action driving an agent’s
behavior, based on partial observation of its behavior up to the current time.
Deriving the underlying plan can be useful for many purposes—predicting the
agent's future behavior, interpreting its past behavior, or generating actions
designed to influence the plan itself. Researchers in AT have studied plan
recognition for several kinds of tasks, including discourse analysis [Grosz and
Sidner 1990], collaborative planning [Huber and Durfee 1993], and adversarial
planning [Azarewicz, et al. 1989]. These works have employed a great variety of
reasoning techniques, operating on similarly various plan representations and
adopting varied assumptions about observability.

The common theme underlying these diverse motivations and approaches is that
the object to be induced is a plan, and that this plan is the cause of observed
behavior. If there is anything special about the task of plan recognition as
opposed to recognition in general, it must be due to special properties of plans:
how they are constituted, and how they cause the behavior we observe and wish
to predict, interpret, and influence.

We can distinguish plan recognition from uncertain reasoning in general by
noting two special features of plans. First, plans are structured linguistic objects.
Plan languages considered in Al research range from simple sequences of action
tokens to general-purpose programming languages. In either case, the
recognizer can and should exploit the structure of plans in inducing them from
partial observations of the actions comprising the plan. Another way to say this
is that plans are descriptions of action patterns, and therefore any general
pattern-recognition technique is automatically a plan recognition technique for




the class of plans corresponding to the class of patterns associated with the given
technique.

The second special feature of plans is that they are rational constructions. They are
synthesized by a rational agent with some beliefs, preferences, and capabilities,
that is, a mental state. Knowing the agent’s mental state and its rationality
properties strongly constrains the possible plans it will construct. (The degree of
constraint depends on the power of the rationality theory we adopt.) The
rational origin of plans is what distinguishes plan recognition from pattern
recognition. If the observations available include evidence bearing on the beliefs,
preferences, and capabilities of the agent, then the recognizer should combine
this with evidence from the observed actions-in reasoning about the entire plan.

Our first step in this project was to elucidate [Pynadath and Wellman 1995] a
general Bayesian framework for plan recognition. Our basic approach is similar
to that of Charniak and Goldman [Charniak and Goldman 1993}, elaborating and
departing in some respects, less well-developed in others. We describe the high-
level idea below; for a more complete description and some specific
developments of the technique see the cited papers.

Our framework is Bayesian in that we start from a causal theory of how the
agent’s mental state causes its plan and executing its plan causes activity, and
reason from observed effects to underlying causes. Our recognizer has uncertain
a priori knowledge about the agent’s mental state, the world state, and the
world’s dynamics, which can be summarized (at least in principle) by a
probability distribution. It then makes partial observations about the world, and
uses this evidence to induce properties of the agent and its plan.

We begin with a model of the planning agent operating in the world. As it begins

lanning, the agent has a certain mental state, consisting of its preferences (e.g.,
goals), beliefs (e.g., about the state of its environment), and capabilities (e.g.,
available actions). We assume the actual planning process to be some rational
procedure for generating the plan that will best satisfy the agent's preferences
based on its beliefs, subject to its capabilities. This plan then determines (perhaps
with some uncertainty) the actions taken by the agent in the world.

Once we have accounted for the agent’s plan-generation process, we need to
consider the effects of the plan’s execution. In many plan-recognition domains,
the external observer finds the agent’s actions inaccessible. In such cases, the
recognizer observes actions only indirectly, via their effects on the world (which
themselves are typically only partially observable). These restricted observations
then form the basis of inference.

Thus, observations of the state of the world provide two types of evidence about
the plan. First, the world influences the agent’s initial mental state, which
provides the context for plan generation. Second, changes in the world state
reflect the effects of the agent’s actions, which result from executing its plan.




Bayesian Networks for Plan Recognition

To perform plan recognition tasks, we generate a Bayesian network
representing the causal planning model and use it to support evidential
reasoning from observations to plan hypotheses. The structure of the Bayesian
network is based on the framework depicted in Figure 1. That diagram can itself
be viewed as a Bayesian network, albeit with rather broad random variables. To
make this operational, we replace each component of the model with a
subnetwork that captures intermediate structure for the particular problem. The
limited connections among the subnetworks reflect the dependency structure of

our generic planning model.

: —> Recognizer

Figure 1: Bayesian plan recognition framework.

The framework as described above is of course very general. We have explored
particular instances of the approach, specifically looking at the issue of modeling
context in the domain of traffic monitoring [Pynadath and Wellman 1995]. In
subsequent work, we investigated more deeply the problem of modeling the
planning process. In doing so, we need to adopt particular assumptions about
the plans generated, and determine an effective recognition strategy.

Probabilistic Context-Free Grammars

Our approach has been to treat plan generation as a structured stochastic
process, and recognition as the task of answering queries about events in the
generation of particular observations. Our first deep study adopted the
generative model of probabilistic context-free grammars (PCFGs), a well-studied
and commonly applied model for pattern recognition [Charniak and Goldman
1993; Wetherell 1980]. Interpreting a string of observations generated from a
grammar is known as parsing, and the general recognition problem can be cast in
terms of queries about the parse. For PCFGs, efficient algorithms have been
developed for several useful types of queries (i.e., calculating the probability of a




given string, or finding the most likely parse). However, for other queries
potentially useful in plan recognition, only brute-force enumeration is available.

To extend this approach, we have shown [Pynadath and Wellman 1996;
Pynadath and Wellman 1998] how to construct a Bayesian network to represent
the distribution of parse trees induced by a given PCFG. The network structure
mirrors that of the chart in a standard parser, and is generated using a similar
dynamic-programming approach. By augmentations of the network, we can
relax the context-free restriction of the grammar in a controlled way, admitting
important context-sensitivities without invalidating the inferences drawn by the

recognizer. -

This method generalizes the class of queries that can be answered in several
ways:

(1) allowing missing tokens in a sentence or sentence fragment,

(2) supporting queries about intermediate structure, such as the presence of
particular nonterminals, and

(3) flexible conditioning on a variety of types of evidence.

We direct the reader to our published work for discussion of the technical details
of our algorithm. In these documents, we present an algorithm for constructing -
Bayesian networks from PCFGs, and show how queries or patterns of queries

on the network correspond to interesting queries on PCFGs.

Air Force Plan Recognition Application

The generalized pattern-recognition procedure is potentially applicable to a wide
range of Air Force problems involving interpreting uncertain or incomplete
observations. One example comprises problems of plan recognition, where the
aim is to interpret or predict the actions of an observed agent (friend or foe),
based on uncertain observations of its action thus far.

One of the more common representations for planning structures used in plan-
recognition research is an action decomposition hierarchy, sometimes called an
event tree [Kautz and Allen 1986]. Event trees and other variants of hierarchies
map easily to context-free grammars, and indeed the parsing approach to
recognition has previously been proposed (for the deterministic case) by Vilain
[Vilain 1990]. By extending the event-tree model to include probabilities, we
provide a basis for distinguishing among equally possible but unequally
plausible explanations of the observations. As Charniak and Goldman [Charniak
and Goldman 1993] (among others) have argued, this is a critical requirement for
any useful plan recognition algorithm.

In air-combat scenarios, for example, we can model the behavior of a fighter
plane to allow tracking and prediction of its actions. The probabilistic event tree
could include information about possible specializations of its general mission
(e.g. fly to target, intercept enemy plane), as well as decompositions of plans into




subplans (e.g. employ weapons, evade, chase) or observable actions (e.g. start
turning, stop turning, maintain current heading). An example event tree for an
air-to-air combat scenario (borrowed from Tambe and Rosenbloom [Tambe and

Rosenbloom 1995)) is presented in Figure 2.

Top-Level Plan | Mission1, Mission2,...

Subplan 1 Subplan 2] sssasx

Pointing-Maneuver,  Pointing-Maneuver, Push-Fire-
Achieve-Proximity, Push-Fire-Button, Button, etc.
Cut-To-LS, etc. Cut-To-LS, etc.

Figure 2: An example event tree from air combat domain.

We can then translate this event tree representation into a probabilistic grammar
whose rules correspond to the plan specializations and decompositions. The
algorithm mentioned above can use this grammar to generate a Bayesian
network corresponding to the probability distribution over the possible
behavior of the tracked plane. This network would support a wide variety of
useful queries, using the traditional methods of evidence propagation to
compute the relevant probabilities. In the air-combat example, a pilot may wish
to determine whether a nearby enemy plane is about to launch a missile, or is
merely flying to another target. The Bayesian network can provide the
probability of either subplan, conditioned on whatever behavior has been
observed so far. These probabilities, along with the different implications of the
two cases, can aid the pilot in choosing the correct course of action.

Probabilistic State-Dependent Grammars

One drawback of using PCFGs for plan recognition (as well as most other extant
approaches), is that they require maintaining the entire history of observations
as context for subsequent plan recognition queries. Whereas this is unavoidable
in general, it may well be possible to employ graphical modeling techniques to
exploit whatever independence exists to support practical inference.

Our investigations culminated in the development of probabilistic state-dependent
grammars (PSDGs), a hybrid representation based on PCFGs augmented with
dependencies of production probabilities on underlying states [Pynadath and
Wellman 2000]. The state evolution is defined by transition probabilities,
represented in dynamic Bayesian networks (DBNs) [Kjeerulff 1992]. Although




any PSDG can be represented as a PCFG, the PSDG representation may be
exponentially more compact when the state space is highly structured.

Example: Highway Traffic
Consider the following PSDG, representing a simplified model of driving plans.

0) Dﬁve

—  Stay Drive  (p(9)=...)
1) Drive —  Left Drive (p,(q) = {0 if Lane(g) = left-lane ...)
2) Drive — RightDrive (p(9))
3) Drive — PassDrive (py(9))
4) Drive —  Exit (p£q))
5) Drive —  Left Right (ps(g))
6) Drive —  Right Left (ps(q))

The state includes the observable features of the driver’s position and speed, as
well as the position and speeds of other cars on the highway. The state also
includes aspects of the driver’s mental state, such as the agent’s preferences
about driving speed, distance from other cars, intended exit, etc. We can explore
the generation of the parse tree of Figure 3 (corresponding to one possible
instance of the agent's plan generation and execution) to illustrate the
interactions between the plan and state models. The pictures across the bottom
of the diagram represents the observable portion of state at that point of the
parse tree. The darker rectangle (blue if reading in color) is the driver whose
planning process we are trying to recognize. The lighter rectangles (green) are
the other cars on the highway that the driver of interest must consider when
planning.
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Figure 3: A parse tree for the simple highway example.




In this scenario, the driver passes two cars, both times on the right. The PSDG
formalism makes it easy to specify how the driver’s decision to pass, and on
which side, may depend on situational factors. This is accomplished by
conditicning the production probabilities in the grammar on the underlying
state. For example, the decision to pass might be based on desired speed and
speed of the car ahead, whereas choice of side might depend on the presence of
cars in other lanes.

Our implemented traffic PSDG has 14 nonterminal symbols (plans), 7 terminal
symbols (actions), and 15 state features (with the mean state space size being 431
elements). Three of these state features correspond to aspects of the driver’s
mental state (preferred speed, intended exit, aggressiveness); the rest of the state
features are completely observable. There are a total of 40 productions with a
mean length of two symbols. We also implemented a PSDG representation for
an air combat domain based on an existing specification using SOAR productions

[Laird, et al. 1987].
PSDG Inference

Although we can perform inference on a given PSDG with a finite state space by
generating the corresponding PCFG and using PCFG inference algorithms, the
explosion in the size of the symbol space can lead to prohibitive costs. In
addition, existing PCFG algorithms cannot handle most plan-recognition queries.

We can potentially perform inference by generating a DBN representation of a
PSDG distribution. The definition of the PSDG language model supports an
automatic DBN generation algorithm. The resulting DBN supports queries over
the symbol, production, and state random variables. Unfortunately, the
complexity of DBN inference is likely to be impractical for most PSDGs, where
the belief state must represent the entire joint distribution over all possible
combinations of state and parse tree branches. For instance, for the complete
PSDG representation of the traffic domain, the DBN belief state would have

more than 10% entries.

Instead, we have designed and implemented inference algorithms that exploit
the particular structure of the PSDG model to answer a set of queries more
restricted than that provided by DBNs. These algorithms use a compact belief
state to answer queries based on observations of the state variables. At time ¢,
the recognizer observes some or perhaps all of the features of the state, Q. Based
on this evidence, the algorithm computes posterior probabilities over the
individual state elements, as well as posterior probabilities over the possible
plans and productions that the agent executed at time { — 1. The algorithm then
computes the posterior probabilities over the plans and productions that the
agent will select at time ¢, as well as updating the recognizer’s belief state.!

! A pseudocode description of the algorithm is available online at
http:/ /www.isi.edu/~pynadath/Research/PSDG. Both the pseudocode and proofs of
correctness are presented in the dissertation [Pynadath 1999].
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